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1. Introduction

Educational research often depends on multivariate techniques like confirmatory
factor analysis and other covariance structure techniques (see, e.g. Joreskog &
Sorbom, 1979; Bonen, 1989) to study underlying dimensions of systematic
variation in student data and to assess teliability and invariance of measurement
instruments (see, e.g. Bohmstedt, 1983). Standard analysis methods make the
simplifying assumption that the student data have been obtained as a simple
random sample from a given population. This involves an assumption of
independently and identically distributed observations. Much educational data
collection, however, is obtained through a complex, multistage sample design
involving clustered observations where this assumption is unrealistic. Typical
examples are largescale surveys like the oftenused National Longitudinal Study
(NLS) of the high school graduates of 1972 and the newly launched National
Longitudinal Study of 1988 (NELS:88) with stratified sampling of schools and
random sampling of students within schools. This paper considers another large
scale survey, the Second International Mathematics Study (SIMS), with a similar
nested or hierarchical data structure of students observed within classes, obtained
within schools within school districts. Standard analysis methods are adversely
affected by such deviation from simple random sampling (see, e.g. Skinner, Holt,
Smith, 1989). For achievement tests in schools the violation of the assumption of
independent observations may be particularly important since students of the
same class are likely to produce sizeable intraclass correlations due to strong
common sources of variation. In the last few years suitable techniques have
become popularized for univariate response models including multiple regression
using random coefficient or multilevel regression models (see, e.g. Bock, 1989;
Raudenbush & Bryk, 1988). Extensions of techniques for multivariate response
models are, however, just emerging. Some new developments of this kind will be
demonstrated in this paper.

From the above sampling perspective design features can be viewed as
complicating the statistical analysis. The complex sample design of educational
studies, however, also offers an opportunity for more informative modeling of
substantive phenomena. 1 here is often an explicit interest in relating the
variation in the data to the multiple stages of the sampling, such as school, class,
and student. Data is often gathered on such multiple levels or units of
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observation and there is an interest in studying the interaction among these levels.
For example in NELS:88 there is not only an interest in studentlevel data but
also data obtained for these students' teachers, school principal, and parents.
SIMS has information on eighth and twelfth grade mathematics achievement,
where effects of differing amounts of "tracking" in different educational systems
in different countries and provinces can be studied. In SIMS it is therefore of
interest to separate withinclass and betweenclass variation of student
achiew- nt, to relate betweenclass achievement variation to classlevel
information or teacher and teaching characteristics, and to contrast different
educational systems (see, e.g. Burstein, 1990).

While the :.tatistical concerns about multivariate modeling in complex samples
and the emerging solutions are rather new, the substantive concerns about
"multilevel" modeling are relatively old including issues related to the proper
unit of analysis, aggregation effects, and contextual effects. For overviews in
educational and sociological contexts, see Cronbach (1976) and Burstein (1980).
The Cronbach reference is particularly relevant to this paper since he discusses
issues of factor analysis on multiple levels. Cronbach reanalyzes BondDykstra
data from the Cooperative Reading study using separate factoring of withinclass
and betweenclass covariance matrices for ability measures. Hamqvist (1978)
uses a similar approach to factor analyze mental ability scores of students
observed within classrooms. These analyses point to different structures on the
two levels and when using the usual overall covariance matrix. However, these
ideas do not appear to have had a large impact on factor analysis practice when it
comes to hierarchical data such as students within classes. One reason is perhaps
that the statistical methodology and software development has lagged behind (see,
however, Schmidt, 1969).

Relevant statistical methodology is now emerging for efficient multivariate
analyses of the kind that Cronbach and others envisionei (for an overview, see
Muthen, 1989). The aim of this paper is to address some substantive analysis
questions in the SIMS data and let these analyses indicate the considerable
potential of this new methodology. Mathematics achievement for U.S. eighth
graders will be studied. These students are to some extent selected into different
types of eighth grade math classes based on previous performance. Typically,
arithmetic content is well coveYed, bu there are major differences in how much
algebra and geometry is taught. In thi; way, the classes can be characterized in
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broad categories like remedial, typical, algebra, and enriched, but differences in
emphases across classes remain even within these categories. This paper studies
issues related to between and withinclass decomposition of achievement
variance and the change of this decomposition over the course of the eighth
grade.

2. The data

In the Second International Mathematics Study (Crosswhite, Dossey, Swafford,
McKnight & Cooney, 1985) a national probability sample of school districts was
selected proportional to size; a probability sample of schools was selected
proportional to size within school district; and two classes were randomly drawn
within each school. We will consider a subset of the U.S eighth grade data
concerning 3,724 students who took the corc test at both the pretest in Fall of
1982 and posttest in Spring of 1983. These students are observed in about 200
classes from about 100 schools. The class sizes vary from 2 to 38 with a typical
value around 20.

The core test consisted of 40 items in the areas of arithmetic, algebra, geometry,
and measurement. For more detail these topics will be further broken down
resulting in eight subscores to be analyzed, where each subscore is obtained as the
sum of rightwrong scored items taken from the 40 core items. One item in the
core had a very low itemtest correlation and was excluded, so 39 items were
used in total.

The subscore RPP consists of eight ratio, proportion, and percent (RPP) items.
FRACT consists of eight common and decimal fraction items. EQEXP consists
of six algebra items involving equalities and expression. INTNUM consists of
two items involving integer number algebra manipulations. STESTI consists of
five items dealing with measurement items involving standard units and
estimation. AREAVOL consists of two measurement items dealing with area and
volume determination. COORVIS consists of three geometry items involving
coordinates and spatial vizualization. PFIGURE consists of five geometry items
involving properties of plane figures.

Although the subscores consist of relatively few it ams and may be rather
unreliable, it is of interest to be able to separately itudy these variables since to
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some extent they correspond to different emphases in eighth grade mathematics
curricula. Later on we will compare the analysis of these eight items with the
analysis of four aggregates of these variables, resulting in Arithmetic, Algebra,
Measurement and Geometry scores.

Teacherreported opportunity to learn (OTL) information was also recorded for
these items. For each item the value 0 or 1 was recorded, where 1 was given if
the mathematics needed to solve the item had been taught during eighth grade or
in prio: years. The achievement subscore averages and corresponding OTL
averages for these eight variables are given in Table 1 for both the pretest and
posttest occasion. We see that OTL varies considerably over subscores. For the
arithmetic topics of RPP and FRACT the OM variable obtains close to a
maximum score of 8, while for the algebra topic of EQEXP and the geometry
topic of PFIGURE only about 2/3 of the maximum possible OTL value is
observed. For EQEXP and PFIGURE the OTL also has a relatively large
standard deviation, corresponding to the tracking effect of different classes
putting different emphasis on algebra and geometry training.

Insert Table 1

Of particular interest in this paper is the variance decomposition of the subscores
with respect to withinclass student variation and betweenclass variation, and
the change of this decomposition from pretest to posttest. For related SIMS
analyses, see Schmidt, Wolfe, & Kifer (1990). For other test score analyses of
this type, see e.g. Wiley and Bock (1967) and Rakow, Airasian, and Madaus
(1978). In the SIMS such variance decomposition itlates to effects of tracking
and differential curricula in eighth grade math, where one may hypothesize that
such selection effects tend to increase betweengroup variation at the expense of
withingroup variation. We will focus on the relative amount of between and
withinclass variation. However, since the data hierarchy involves school, class,
and student we will first consider this threelevel decomposition using a standard
random effects nested analysis of variance model (see e.g. Wi ner, 1971)

5
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(1) Yghi = g + ag 4. Pgh + Tghi9

for individual i observed within the hth class within the gth school. Here,i.t is the
overall mean and a, p, y are independent random normal variables with zero
means and variances to be estimated. The variance estimates are obtained for
each of the eight subscores at both pretest and posttest using BMDP3V's
maximum likelihood estimator for unbalanced, nested data.

Table 2 gives the variance decomposition in terms of percentages. All variance
estimates are significantly different from zero except the pretest school variances,
for which only STESTI is significant. The estimates show that the withinclass,
studentlevel percentage of the variance clearly dominates the subscore
variability. The within variation is about 60 80% while the between variation
is divided into about 20 30% for classes and about 3 13 % for schools. Both
within variation and between variation increases over time.

Table 2

The two rightmost columns of Table 2 give the difference of the posttest and
pretest value relative to the pretest value for between (school and class) and
within. This shows that the between components increase much more strongly
than the within components. The between variation increase is particularly strong
for the algebra content of EQEXP and the geometry content of PFIGURE. This
is in line with the OTL variation across classes discussed in conjunction with
Table 1. In terms of percentage of total variation, however, the within variation
decreases only an average of about 5 10% over time. This suggests that the
heterogeneity within classes remains very large. The influence of tracking on
betweenclass variation in math achievement makes for a strong increase in
between variation over eight grade. Within variation still clearly dominates
although it does not increase much over time.

We should, however, note that the within variation includes individualle rel
measurement error variance which would inflate the contribution of with n
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variation. Table 2 shows that the student percentage of the variance is the lowest
for the two subscores created from the largest number of items, RPP and
FRACT. It may be that this is an artifact of the possibly higher reliability of
these two subscores. Also, the relative size of the measurement error is
presumably larger at pretest than at posttest since less learning has taken place at
pretest. This would confound comparisons over time of relative variance
contributions. The issue of how measurement error can be taken into account
will be considered next.

3. A multilevel factor model

Each of the eight achievement subscores are created by the summing of rather
few dichotomous items. In this way they are all likely to contain a sizeable
amount of measurement error. At the same time the eight achievement subscores
pertain to various aspects of central eight grade math topics. Taken together this
points to the use of a multivariate measurement model in terms of a factor
analytic, multipleindicator model for the eight subscores.

3.1 Variance decomposition

Consider a variance component decomposition of the eightdimensional
observation vector y for individual i in group (class) g

(2) Ygi = YBg Ywgi9

where the between component ygg and the within component ywgi are

independent as in conventional random effects analysis of variance. The between
component contains class and school contributions to the individual's score while
the within component represents the contribution of the student. For simplicity
we will not separate the school and class components here. In this way the
variance of ygi can be decomposed into a between and a within part,

(3) = 1W.

7
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In the present application we will assume that a onefactor model holds for both
the between and the within components of (2) and (3). For a given variable j in
the vector ygi we may therefore decompose into four independently varying

parts,

(4) ygij = v + Xsj 11B EBgi XWi ThVgi Evigij

where v is an intercept parameter and the X's are loading parameters.

The within part of (4) can be interpreted in line with conventional factor analysis
in that the within factor lwgi and the within residual ewgi refer to individual

level varlation. In the multilevel model this is withingroup variation. The
single factor accounts for all covariation among the individuallevel achievement
scores, representing a general math achievement trait for these eighth graders.
While other research on these data suggest several minor factors on the item level
(see, e.g. Muthen, 1988), these factors largely vanish in the aggregated scores.
The residuals are viewed as measurement errors, that is variablespecific
individual variation not accounted for by the factor. These errors are
independent of the factor and are independent of each other.

The between part of (4) departs from conventional analysis in that it addresses
acrossgroup variation rather than acrossindividual variation. Here the factor
r1B is interpreted in terms of selection effects due to tracking and differences in

curricula. The single factor represents a single dimension on which selection is
made with differing AB coefficients giving different weigths to different topics.

One may for example hypothesize that entering eighth grade selection is
dominated by previous arithmetic performance so that the between loadings are
relatively higher for RPP and FRACT. During eight grade curricula vary
greatly in terms of both algebra and geometry topics. This means that at posttest
the variance of the between residual LB may increase for these topics and the

unidimensionality of the between factor model may be called into question.

Consider now the variance components of (4) for observed variable j.

8
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(5) 02 7,2 02
1 2 2

ygij Bj 13 egj + Ar a a2
J 71W

+ evij

= BF + BE + WF + WE ,

say, where B and W stand for between and within, while F and E stand for factor
and error.

3.2 Reliability

The conventional factor analysis definition of reliability uses the R2like ratio of
variance due to the factor divided by total variance in y. Since this refers to
individuallevel reliability the analogous reliability definition for yi in multilevel

data in our model would be

(6) Within reliability (yi) = WF / (WF + WE),

while the reliability in the acrossgroup variation is

(7) Between reliability (yi) = BF / (BF + BE).

3.3 Intraclass correlation

Analogous to random effects analysis of variance (Winer, 1971) we note that the
model implies the following correlation between two individuals i and i' in group
g for variable yj,

(8) Corr (ygij, ygilj) = Coy (ygij, ygilj) / cr2ygij

=(BF+BE)/(BF+BE+WF+WE).

In this model this intraclass correlation (Fisher, 1958; Haggard, 1958; Koch,
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1983) is also the proportion of between variance in yj The larger it is the

further we deviate from the conventional assumption of all observations being
independent. If BF and BE are both zero for all variables there is no need for a
multilevel analysis and the independence assumption of a conventional analysis
are fulfilled. As we saw in Table 2 the between variance components appear
sizeable in this data set. The proportions of between variance are obtained from
Table 2 by subtracting the student percentage of variance from 100. This gives a
proportion of about 0.2 0.4. Again, this proportion is influenced by
measurement error as is clear from (8).

Given the decomposition in (5) into factor and error variance we may consider
al errorfree version of the variance ratio in (8), namely the factor variance
ratio or "true intraclass correlation coefficient" for each variable,

(9) BF / (BF + WF).

In Table 2 we also considered the percentage of variance increase from pretest to
posttest for between and within. This increase can also be presented in an
"errorfree" form using pre and posttest values for BF and WF, respectively.

4. Multivariate multilevel estimation

The above modeling leads to a covariance structure model for twolevel data
which uses a conventional factor analysis covariance structure on both the
between and within level,

(10) EB = AB TB AB' 4- eB,

(11) Zw,= Aw + Ow,

where the A matrices contain the loadings Xsai and Xwj and have one column in

this application, the `11 matrices represent the factor variances 02 and a2
11W'

and the e matrices represent the covariance matrices for the residuals EBai and

Muthen and Satorra (1989) and Muthen (1989, 1990) consider variations of
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multilevel models leading to mese and related covariance structures. These
papers, also show the relationship of these trodels to random parameter models
that have become popular in educational applications of regression analysis (see,
e.g. Raudenbush & Bryk, 1f88). Essentially, the above modeling may be viewed
as a random factor means, random measurement intercepts model. Random
slopc.s are not involved. The modeling can be extended to 3level data for
school, class, and student but that will not be considered here.

Maximum likelihood estimation of multilevel covariance structure models was
studied already by Schmidt (1969), see also Schmidt and Wisenbaker (1986), but
these techniques do not appear to have gotten into practical use. More recent
contributions are Goldstein and McDonald (188), McDonald and Goldstein
(1989), Longford and Muthen (1990), and Muthen (1989, 1990). The technical
details of this estimation will not be presented here. Briefly stated, in the two
level case with G groups the likelihood is considered for G multivariate normal
observation vectors, where each vector contains all variables for all individuals in
the group. There are Ng individuals in group g, where N = E Ng is the total

sample size. Unlike conventional analysis independence of observations is not
assumed for all N observations but only over the G groups, while the intraclass
correlation is modelled via EB. The covariance matrices of ZB and Zw contain

the parameters of interest. In this paper we will assume that we study the
common case of no mean structure. As opposed to conventional covariance
structure analysis we do not only use the regular p x p sample covariance matrix,
but more sample information is available. In the balanced case the ML procedure
leads to the use of the customary pooledwithin and between sample covariance
matrices. A largesample chisquare variable is obtained to test restrictions
imposed by the model on ZB and Ew With p variables and r parameters the

number of degrees of freedom is p(p+1) r. We note that a conventional
covariance structure model has p(p+1)/2 r degrees of freedom since this
analysis restricts the matrix LB to be zero (in this case r is reduced by the

number of parameters for the between part). For more details and relations to
conventional structural equation modeling, see Muthen (1989, 1990).

While in principal special formulas and software could be developed for
multilevel factor analysis (MFA) maximumlikelihood (ML) estimation, Muthe.
(1989, 1990) showed that multiplegroup structural equation software can be

1 1
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modified for MFA ML analysis. In line with this idea, Muthen (1990) proposed a
simpler MLbased MFA estimator which can be used with already existing
multiplegroup structural equation software such as LISREL, LISCOMP, and
EQS. In the balanced case this estimator is the MFA ML estimator. In the
unbalanced case the estimator is still consistent and the chisquare test of model
fit and standard errors of estimates can be used as rough approximations of the
ML values. We will use both procedures in our analyses for comparison
purposes. The true ML procedure will be referred to as FIML (full information
ML) and the simpler estimator as MUML (Muthen's MLbased estimator).
Muthen (1990) found no important differences between the results of FIML and
MUML.

The MUML estimator demonstrates the basic features of MFA. Consider the
three customary sample covariance matrices ST, Spw, SB,

G Ng

(12) ST=(N- 1 )4IIi(ygi-5,-)(ygi-Y)'
g=1 1=1

G Ng

(13) Spw = ( N - G )"1 I ( ygi Yg) Ygi

gs,1 1=1

(14) sB=(G-1i'Ersigug-nurg-nl
g=1

The matrix ST is used in conventional covariance structure analysis. In the

multilevel case it is a consistent estimator of the total covariance matrix
MB + Mw. The pooledwithin matrix Spw is a consistent and unbiased estimator

of Zw, while the between matrix SB is a consistent and unbiased estimator of

(15) C MB,

12
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where c reflects the group size,

(16) c = [N2 - NI; ][N ( G - 1)11.

g=1

(Muthen, 1990). For balanced data c is the common group size. For unbalanced
data c is often close to the mean of the group sizes. Note that the between matrix
SB is the covariance matrix of group means weighted by the group size.

The MUML MFA estimator (Muthen, 1990) considers the MLlike fitting
function

G { ln I w + c lBI + trace [Ew + c SB In I SB p) +

( N - G ) ( In Ew + trace [LI/ Spw] - lniSpwl - p }

This fitting function is analogous to a twogroup covariance structure ML
estimator where SB and Spw are used to fit their corresponding population

quantities. The first group has G "observations" while the second has N G
observations. In the balanced case this is the MFA FIML estimator in the
common case of an unrestricted mean vector. The divisor is then G instead of
G 1 for SB. The estimation of MFA parameters via (17) can be performed by

the ML fitting function in conventional multiplegroup structural equation
software. This fitting function automatically gives the pseudo chisquare test of
model fit of Ho against unrestricted EB and Iv/ matrices as is desired. The SB

and Spw matrices can be obtained via standard statistical packages. The author

has written a program, available to anyone who wants it, which computes these
two matrices, the c value, and the intraclass correlations for twolevel data. This
means that the MUML estimator is easily accessible today, while this is not true
for FIML. The FIML estimator uses a fitting function similar to (17), but
involves terms for Cach distinct group size, including information on the mean
vectors (Muthen, 1!190). Even when FIML can be done it will be computationally

(17)
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heavier than MUML when the number of distinct group sizes increases.

Muthen (1990) showed that the input specification for the structural equation
model software needed for MUML using (17) can be conveniently indicated via
conventional path diagrams. Using a onefactor model for both between and
within leads to the model diagram of Figure 1. This diagram follows the notation

Insert Figure 1

of (4). Below the row of squares are variables on the within level, evy and iw.

This part of the diagram corresponds to a conventional onefactor model. Above
the row of squares is a row of circles corresponding to the between components,
ye. In this way, the observed variables y in the squares are functions of within

and between components. The between components follow a onefactor model
with residuals Le and factor Tie.

The path diagram corresponds directly to the first group in the twogroup setup
indicated by (17). The first group involves the covariance matrix structure
Zw + c /B. This deviates from the total covariance matrix Zw + IB by the

scalar multiplier c for the between part. This means that the between components
of the variables have to be scaled by 4U which is accomplished by letting the paths
(loadings? from the ye's to the y 's have coefficients fe. The second group in

(17) corresponds to the within variation. The covariance structure of Zw is

captured by using the same model structure as for the first group, following
Figure 1, but fixing all between coefficients and variancecovariance parameters
to zero. Since Ew also appears in the covariance structure of the first group

equality restrictions across groups need to be applied for the within parameters.

As pointed out in Muthen (1989), MFA is a complex analysis which needs to
follow a sound analysis strategy. The actual MFA should in a typical case be
preceeded by four important an ilysis steps, conventional analysis of ST,

estimation of size of between v iriation, conventional analysis of Spw, and

1 4
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conventional analysis of SB.

(1) Conventional factor analysis of ST. This analysis is useful to try out model

ideas. The analysis is incorrect when the data is multilevel due to the correlated
observations. The model test of fit is usually inflated, particularly for data with
large intraclass correlations, large class sizes, and highly correlated variables.
However, the test of fit may still be of practical usefulness to give a rough sense
of fit.

(2) Estimation of size of between variation. It is wise to first check if a
multilevel analysis is warranted. This can be carried out in an MFA by testing
EB = 0, but a simpler way to pt a rough indication of the amount of between

variation is to compute the estimated intraclass correlations for each variable
obtained as the MI. estimate of

(18) a2B / (a2B + 02w)

where a2w is estimated as s2pw and 02B is estimated as

(19) c-1 (52B s2pw)

(see also Winer, 1971; Muthen, 1990). If all intraclass correlations are close to
zero it may not be worthwhile to go further.

(3) Conventional factor analysis of Spw. If the multilevel model is correct, a

conventional analysis of Spw is the same as an MFA with an unrestricted LB

matrix. This analysis estimates individual-level parameters only. Experience has

shown that the analysis gives estimates that are close to the within parameters of
an MFA. The conventional analysis would use a sample size of N G and either
the normal theory GLS or ML estimator. The Spw analysis is expected to give a

better model fit than the ST analysis.

(4) Conventional factor analysis of SB. L ttle may be known about the factor

15

18



structure of /B since it does not concern the customary individuallevel data but

instead acrossgroup variation. The between components have different meaning
than the within components. As the Cronbach (1976) and Harnqvist (1978)
analyses showed, the same structure as on the within level cannot be counted on.
To explore the between structure it is tempting to use SB. Note, however, that

SB is not an unbiased or consistent estimator of EB as is indicated in both (15)

and (19). The EB estimator is also a function of Spw. Equation (19) generalizes

directly to the multivariate case to show this estimator. In other words, any
simple structure expected to hold for EB does not necessarily hold for SB but it

should hold within sampling error for the ML estimate of EB. Unfortunately,

the ML estimator of LB is frequently not positive definite and may not even have

positive variance estimates. This means that in practice we might have to resort
to analyzing SB to get a notion of the EB structure. Fortunately, experience

shows that when it is possible to analyze both matrices, similar results are
obtained. An alternative to this analysis is to use MFA with an unrestricted Iv/

matrix (see also Longford & Muthen, 1990), only testing the restrictions on EB.

(5) The next set of steps uses the outcomes of ihe earlier steps to specify a

sequence of MFA's. As is shown in (17), these analyses make use of Spw and SB

simultaneously. The computations are not complicated by a nonpositive definite
LB estimate since this matrix only appears in the sum Ivy + c EB.

5. Factor analysis results

The analysis steps suggested above will now be applied to the eight achievement
variables at both pretest and posttest, followed by multilevel factor analyses for
pretest and posttest. Finally we will carry out a longitudinal MFA for both
pretest and posttest. The longitudinal analysis gives an efficient way of studying
change in between and within variance component., over time. A twolevel MFA
for students within classes will be used in all cases. The school level will be
ignored here for simplicity. Since there are only two c lasses per school and the
school variance proportions are relatively small, this c ustering effect should not

16
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seriously bias the results.

5.1 Analysis of pre and posttest

Factor analyses of educational data to date have routinely ignored the multilevel
character of data which frequently is at hand. Because of this it is of great
interest to compare the results of conventional analyses with those of the more
refmed MFA. This means that we will look in some detail at the results of the
analysis steps previously outlined.

Table 3 shows the chisquare tests of model fit and estimated item characteristics
for pretest, while Table 4 gives the same values for posttest (standard errors of
estimates will not be given in this paper since all models presented show
parameters significantly different from zero due to the large sample size). The
univariate skewness and kurtosis values do not indicate substantial deviations
from the assumed normality, which might have been the case given the small
number of items forming the subscores. The step 1 conventional ML analysis of
ST gives a reasonable fit at both pretest and posttest given the large sample size
of 3,724. This sample size makes the power of the test very big and rejection at
the 5% level may reflect trivial deviations from the model. The step 2 intraclass
correlations for the eight items are in the range .18 .39 at pretest and .24 .40
at posttest. The values increase over time for all variables and particularly for
EQEXP and PFIGURE. This is in line with the random effects analysis of
variance results discussed in connection with Table 2. Individuallevel
measurement error probably deflates the intraclass correlations. The fact that
they are still big certainly makes it worthwhile to proceed to step 3.

The third step carries out the analysis of the pooledwithin matrix Spw. For both
pretest and posttest the conventional ML analysis gives a worse fit for ST than
Spw for the onefactor model. The difference in number of observations is
negligible,,p1= 3,724 versus N G = 3,527, and caimot alone explain the
difference.' The worsening of fit is expected given the large size of the intraclass
correlations and the large average class size of about 20. Judging from the Spw
analysis the within part of the model has a very good fit to the onefactor model
given the large sample size. It is also interesting to note from Tab es 3 and 4 that



the conventional analysis of ST strongly overestimates the reliabilities of the

variables relative to the Spw analysis. The Spw analysis adjust for differences in

class means. Heterogeneity in the means across classes increases the reliable part
of the variation which inflates the reliabilities (see also Muthen, 1989, pp. 559
560). The ST reliabilities may be correct for an inference to this particular

mixture of class means, but is not correct for the student scores in any of the
classes. This is further discussed below in connection with the MFA results. It
appears that the conventional ST factor analysis of students sampled within classes

can be quite misleading.

In the fourth step we investigate the between structure. The estimated Is was

scaled to a correlation matrix and subjected to ordinary exploratory factor
analysis by unweighted least squares. Judging from the eigenvalues, a onefactor
model holds at both pretest and posttest. For pretest the first four values are
7.08, 0.26, 0.21, 0.17, while for posttest they are 6.79, 0.30, 0.25, 0.21. The
twofactor solutions had no interpretable structure. The analysis of the
correlation matrix corresponding to Ss gave similar results. The estimated

loadings are rather close to those obtained via the estimated Is, although

somewhat lower overall.

The first MFA step uses a onefactor model for both within and between since
this was suggested in previous steps. This is the model of Figure 1. As in
conventional factor analysis the metric of each factor has to be determined and

this is done by fixing the between and within loadings for RPP to unity. The chi
square test of model fit is 106.16 and 116.00 for pm and post with 40 degrees of
freedom. Given the sample size if 3,724 this is taken as a good fit. The Spw

analysis fitted the within part of the model with 20 degrees of freedom, which

may be viewed as an analysis with no between structure imposed. The addition of
the between structure in the MFA adds about 50 60 chisquare points for an
additional 20 degrees of freedom. This increase does not seem unduly large for
the sample size. It is interesting to note the perfect agreement to two digits in the
estimated within reliabilities for MFA and Spw. This is because the MFA

estimation of Iv is largely determined by the second group in the fitting func tion

of (17) due to the large number of students per class.
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Tables 3 and 4

The MFA within reliabilities (see defmitions in Section 3.2) are very low as
should be expected given the small number of items comprising each subscore.
As expected the highest reliability values occur for the arithmetic topics of RPP
and FRACT, perhaps not only because these subscores consist of more items than
the others, but also because these topics have higher eighth grade OTL (see Table
1). There is a strong increase over time, particularly for EQEXP and PFIGURE.
These correspond to new topics at pretest for many eighth graders, whereas they
have been better covered at posttest.

Note also that the Spw analysis gives reliabilities which agree with the within
values of the MFA to two digits. The higher ST values observed above may be
viewed in terms of the MFA model of (5). For simplicity, assume that to a
reasonable approximation XBJ equals Aw Then the reliable part of the ST

variance is modelled as X,2. (02
B + a2nw) while the error variance sums theTI

between and within errors. The reliable part is an increase compared to WF of
(5), which taken together with a relatively small between error variance results in
the ST reliability overestimation. In this application, both the pretest and posttest
data led to a rejection of the test of equality of between and within loadings. This
may be due to the large sample size, however, since the pattern of estimated
loadings is very similar.

The between reliabilities are very high and do not change much from pretest to
posttest. It is interesting to note that the largest reliability increase occurs for the
algebra content of EQEXP, meaning that EQEXP becomes a better measurement
at posttest of the dimension that makes classrooms differ. On the whole,
however, the indicators of the between factor are very homogeneous adding very
little variation around the general dimension. It may be noted that the step 4
analysis of the estimated Is gave between reliabilities which are almost identical

1 9
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to the MFA results. Step 4 analysis based on SB, however, gives consistently

lower between reliabilities.

It is interesting to return to the question of variance decomposition discussed in
Sections 2 and 3.1 and compare the results of conventional random effects
analysis of variance with those of the multilevel factor analysis. Tables 3 and 4
also include the estimated true intraclass correlations. The true intraclass
correlation (9) for each variable is calculated as the errorfree variance ratio
BFABFWF) using the notation of (5). The values are around 0.6 with little
difference between the pre and posttest results1. This value should be compared

to the observed variable intraclass correlations, or proportion between variation,
of Table 2 which were in the range 0.2 0.4. In this way between class variation
becomes relatively more important when purging the measurement error in the

scores. This is in line with the expectation that measurement error inflates the
within variation. While Table 2 shows a slight increase over time in the
proportion between for all variables, the true intraclass correlations of Tables 3

and 4 show a slight decrease for several variables.

5.2 Longitudinal model

Of particular interest in this achievement analysis if the change from pretest to
posttest in variance contributions. A more efficient use of the data is to perfoan

a simultaneous analysis of pretest and posttest data. Such a longitudinal model
also makes it possible to study change in variance contributions due to the
between and within factors, ensuring that these factors are measured in

comparable metrics over time. Figure 2 outlines the longitudinal MFA model.

Figure 2

Drawing on the pre and posttest analyses the longitudinal model specifies one
between factor and one within factor for each of the two time points. The two
between factors are allowed to be correlated and so are the two within factors.

The variables may also be allowed to correlate over time via correlated
measurement errors. The need for correlated individuallevel errors is often
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found in conventional covariance structure analyses where the same instrument is
repeatedly administered. Here we extend this to correlation of between errors.
For example, if at pretest classroom diffeiences in algebra were beyond what
could be explained by the general level of the pretest (a proxy for the between
factor) this algebra difference might prevail at posttest leading to a between error
correlation.

To be able to study change in factorrelated variances over time it is necessary to
specify the same metric for both the between and the within factor over time. To
this aim we want to restrict the loadings to be equal over time at both the between
and within level. We know, however, a priori that some math topics become
much more familiar to the students over the course of the eighth grade and
therefore may lead to different measurement properties of subscores over time.
Coverage of other topics does not change as much over time. This is also
supported by the OM differences and the prepost differences in estimated
reliabilities. For such reasons we will allow the three variables of EQEXP,
AREAVOL, and PFIGURE to have different loadings over time, while the other
loadings are restricted to be equal, apart from the fixed loading for RPP.

Table 5 shows the different steps of MFA model fitting. Results from analyzing
ST and Spw are given in addition to MFA results for comparison. In the baseline
model 1 there is no loading invariance imposed and no error correlations are
included. The fit is poor for this model. Adding loading invariance over time
also gives a poorly fitting model. Model 3, using partial loading invariance,
improves the fit dramatically with a loss of only three degrees of freedom. It is
interesting to note the large difference in fit between using ST and using Spw.
Again, using Spw is correct given the multilevel model. This analysis points to a
good individalevel fit. Model 5 adds between correlations to the MFA model
resulting in a significant improvement in fit. Comparing the model 4 result for
Spw with the model 5 result for MFA shows that doubling the number of degrees
of freedom by addition of the between structure approximately doubles the chi
square value. We conclude that the MFA model 5 fits reasonably well in both its
within and between part given the large sample size.
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Table 5

Although all significant, the within error correlations are rather small, in the

range 0.07 0.21. The between error correlations are considerably larger, .:.11 the

range 0.25 0.78. The factor correlations point to a strong linear relationship

over time, .80 for within and .93 for between. The ST and Spw analyses gave

factor correlations of 0.88 and 0.80, respectively. The ST value overestimates the

within value while the Spw value is accurate. The percentage factor variance

change from the longitudinal MFA model obtain the values 26% and 40%,

respectively for between and within. These changes are discussed in more detail

in connection with Table 6 below.

Table 6 gives estimated variance ratios for the eight subscores in the form of
reliabilities, true intraclass correlations (BF / (BF + WF)), and true increases

from pre to post. The reliabilities and the true intraclass correlations are similar
to those of Tables 3 and 4 for the separate analyses of pre and post.

Table 6

A new indication of the inflation of within variation due to measurement error is

seen in the two rightmost columns of Table 6. As in Table 2 these display the
increase in variance from pretest to posttest relative to the pretest value. In Table

6 the errorfree values BF and WF are used. Comparing with the two right
most columns of Table 2 we find a very different picture. Overall, in Table 6 the
between variance increase over time is not as large and the within increase is

much larger. In fact, the within increase is the largest with one exception. The
Table 2 results are distorted by individuallevel measurement error. Despite an
increase over time in true within variance due to the factor the decrease in the
measurement error variance over time substantially dampens the total within
variance increase. We now find that the errorfree within variance increases
dramatically over time, or, in other words, withinclass student heterogeneity
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increases dramatically. This may be due to increasing individual differences due
to increasing learning opportunities.

5.3 Unreliability sensitivity analyses

The multilevel factor analysis results provided estimates of the true, or error
free, proportions for each variable of between to total variance using the
BF / (BF+WF) ratio of variances due to the factor. It also provides an error
free assessment of change from pre to post in between and within variance due to
the factor. The corresponding observed variable quantities from analysis of
variance presented in Table 2 were quite different. The Table 2 results pointed
to a larger share of within variation and a smaller increase over time in within
variation. The differences are hypothesized to be due to measurement error.
Usirg more reliable scores might not make for such a large difference in
conclusions. More reliable scores are obtained by the summing of more
dichotomous items. Si-le the assumption of unidimensionality of the items has
been supported in the analysis one may contemplate the use of more aggregated
subscores. It is of practical interest to get a feeling for how different amounts of
aggregation and reliabilities affect the results. Also, the use of different
aggregation levels gives a check of the robustness of the MFA results. It is of
practical interest to know if the eight variable factor analysis, using variables
with very low reliability, gives trustworthy results for the true, errorfree
estimates.

To study influence of unreliability, RPP and FRACT were combined into a single
ARITH(metic) score based on 16 items, EQEXP and INTNUM were combined
into an ALG(ebra) score based on 8 items, STESTI and AREAVOL were
combined into a MEAS(urement) score based on 7 items, and COORVIS and
PFIGURE were combined into a GEOM(etry) score based on 8 items. Also, a
total score based on all 39 items will be used.

Table 7 gives analysis of variance estimates for these new scores. Consider first
the total score. This score may be viewed as a proxy for the factor in the MFA.
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Table 7

The proportion between is .52 at pretest and .53 at posttest. These values are not

too far off from the Table 6 average values in the columns BF / (BF + WF)
reflecting the reliability of the total score. The percent increase in Table 7
should be compared to the Table 6 column "Errorfree % increase". It is clear
here that the total score cannot capture the differences in increase for the

different parts of the score exhibited in Table 6. In sum, using the total score
does not give misleading results, but certainly undifferentiated ones.

The use of the four aggregated scores ARITH, ALG, MEAS, and GEOM turns

out to result in biases similar to those that we observed for the eight less
aggregated variables. Relative to Table 6, the general picture is still that the
proportion between is underestimated, the percent change in between is
overestimated, and the perceni change in within is underestimated. From a
practical point of view it is interesting to note that the biases are quite large even
for the 16 item score of ARITH. Going from the 8 item subscores of RPP and
FRACT to the 16 items of ARITH decreases the bias considerably but not

sufficiently. The effects of unreliability makes it impossible in the analysis of
variance to distinguish math topic differences between subscores from differences
in the number of items used in the sum to create the score.

Table 8 gives the results of the longitudinal MFA using the new set of four
achievement scores. A model analogous to model 5 in Table 5 is used. The
fourv ariable results of Table 8 give a picture similar to the eigthvariable
results of Table 6. In this data set it is clear that, unlike anova, MFA is not
sensitive to the level of variable aggregation and reliability.

Table 8
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6. Conclusions

Multilevel factor analysis has been shown to give new types of useful information
on educational test scores. Using the structure of the sample design, the effects of
clustered (nested) observations is not only taken into account but also modeled in
interesting ways to shed light on within and between class variance components
and their changes over time.

From a substantive point of view, it was found that the strong elements of
tracking in eighth grade math classes makes for betweenclass variation in the
achievement scores which is about as large as the withinclass student variation.
At the same time, however, withinclass variability increases much more
substantially than betweenclass variation over the course of eighth grade.
Increase in both between and within variation is particularly dramatic for algebra
topics related to equations and expressions and geometry topics related to plane
figures.

From a methodological point of view, several interesting fmdings emerged. Due
to unreliability in the observed scores, the results obtained by analysis of variance
are quite different from those of MFA. Anova substantially underestimates the
intraclass correlation, or the proportion of betweenclass variation and
substantially underestimates the increase over time in withinclass variation. For
trustworthy anova results on sums of dichotomously scored items large sets of
items are needed and this may preclude differentiation of subtopics. It is also
clear that conventional factor analysis of the usual sample covariance matrix gives
distorted results. The chisquare test of fit is inflated and estimates are severly
biased. MFA is a readily available technique since it can be carried out with
standard structural equation software. Given this, it is hoped that educational
researchers quickly adopt these exciting new analysis tools. However, MFA is
not a smallsample technique. In particular, MFA calls for data that have a
sizeable number of groups, preferrably at least about 100. As was pointed out by
Cronbach (1976), if cost permits it may be better to observe fewer students per
class in favor of including more classes.

Several extensions of th.! MFA models studied here are available. In addition to
classlevel components of studentlevel variables one may include classlevel
variables. For example the classlevel OTL information can be incorporated to
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explain the classlevel student achievement variation (see Muthen, 1990). The
modeling is not limited to factor analysis, but structural equation models can also

be analyzed (see Muthen, 1989). More than two levels of nesting can be

incorporated. All of these extensions fit into conventional software using the
MUMLtype estimator. The MFA techniques are of course not limited to

educational data and students observed within classes and schools but can be used

in any situation where cluster sampling has been employed, for example with
geographically detennined groups of households.
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Footnotes

1. The metric of the factors is noteworthy. The choice of variable for the
loading fixed at unity does influence the ratio of between factor variance divided
by the sum of between and within factor variance. While in Tables 3 and 4 the
use of RPP gives the factor ratio value of RPP, the use of STESTI would instead
give STESTI's ratio. This is the case whenever the set of loadings differ on the
between and within level. On the other hand, the corresponding ratios for the
variables, given in these tables, are invariant in this regard as are all other values
given in the tables.
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Table 1

Performance and opportunity to learn
for eight math achievement subscores

Subscore Number
of items

Pretest Posttest Opportunity to
learn

Mean S.D. Mean S.D. Mean S.D,

RPP 8 3.41 2.12 4.19 2.30 7.48 1.19

FRAcr 8 3.28 1.96 4.09 2.14 7.52 0.83

BQEXP 6 2.38 1.42 2.98 1.63 3.96 1.82

INTNUM 2 0.65 0.70 1.04 0.79 1.88 0.41

STESTI 5 2.91 1.30 3.14 1.37 4.09 1.18

AREAVOL 2 0.64 0.74 0.91 0.81 1.74 0.54

COORVIS 3 1.14 0.91 1.51 0.98 1.61 0.95

PFIGURE 5 1.63 1.27 2.32 1.47 2.91 1.45
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Table 2

Variance decomposition of achievement scores
(percentages of total variance in parenthesis)

Pretest PosttesL % Increase
Number
of items

School Class Student Prop
between

School Class Student Prop Between
between

Within

RPP 8 .189* 1.353 2.990 .34 .638 1.446 3.326 .38 35.1 10.9
(4.2) (29.9) (66.0) (11.8) (26.7) (61.5)

FRAcr 8 337* 1.123 2.366 .38 .557 1.349 2.767 .41 30.5 16.9
(8.8) (29.4) (61.8) (11.9) (28.9) (59.2)

MEV 6 .089* .454 1.473 .27 .260 .781 1.646 .39 91.7 17.7
(4.4) (22.5) (73.1) (9.7) (29.1) (61.3)

INTNUM 2 .020* .107 .358 .29 .053 .142 .442 .31 53.5 23.5
(4.0) (21.2) (70.9) (8.3) (22.3) (69.4)

b Itsti 5 .159 .421 1.163 .33 .179 .485 1.258 .34 14.5 8.2
(9.1) (24.2) (66.7) (9.3) (25.2) (65.5)

AREAVOL 2 .017* .077 .451 .17 .062 .094 .490 .24 66.0 8.6
(3.1) (14.1) (82.8) (9.6) (14.6) (75.9)

COORVIS 3 .08* .145 .656 .21 .073 .202 .680 .32 59.0 3.7
(3.41 (17.5) (79.1) (7.6) (21.2) (68.3)

PFIGURE 5 .062* .301 1.224 .23 .274 .437 1.451 .33 95.9 18.5
(3.9) (19.0) (77.1) (12.7) (30.1) (67.1)

* Not significant at 5% level
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Table 3
Pretest analysis results

AMP

Model tests

Method Chi-square D.F.

ST 83.71 20
Spw 58.29 20
MFA

MUML 106.16 40
FIML 40

Item Characteristics

Skewness Kurtosis Intraclass
correlation

Reliability
kla

BF/(BF+WF)ST Spw
MEA

Within Between

RPP .38 -.68 .34 .61 .44 .44 .96 .52

FRACT .37 -.57 .39 .60 .38 .38 .97 .61

13WCP .23 -.57 .27 .36 .18 .18 .83 .64

poThrt 1111 .60 -.80 .27 .34 .18 .18 .81 .63

STESTI -.24 -.64 .32 .44 .25 .25 .86 .61

AREAVOL .68 -.89 .18 .29 .18 .18 .82 .50

COORVIS .38 -.70 .21 .34 .18 .18 .92 .57

PFIGURE .61 -.21 .24 .32 .17 .17 .78 .59



Table 4
Posttest analysis results

MgAgLion

Method Chi -squal D.F.

ST 88.59 20
Spw 57.45 20
MFA

MUML 116.00 40
FIML 40

Item Characteristics

Skewness Kurtosis Intraclass
correlation

Reliabilit

BF/(BF+WF)ST Spw
MEA

Within Between

RPP 0.03 -1.07 .38 .68 .52 .52 .97 .53

FRACT -0.01 -0.92 .40 .68 .49 .49 .98 .57

WIMP -0.02 -0.89 .38 .55 .32 .32 .92 .64

1NTNUM -0.07 -1.41 .30 .43 .25 .25 .88 .61

STESTI -0.44 -0.62 .33 .52 .34 .34 .89 .56

AREAVOL 0.16 -1.44 .25 .38 .23 .23 .84 .54

LIAJK Vo -0.03 -1.00 .30 .42 .26 .26 .80 .55

PF1GURE 0.15 -0.94 .33 .46 .31 .31 .77 .54
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Table 5

Longitudinal model tests

Model Chi-s uare (d.f.)
ST Spw MFA

1. Baseline 1,041.38 (108) 687.43 (103) 1.101.90 (206)

2. 1 + loading 1,160.47 (110) 734.26 (110) 1,183.59 (220)
invariance

3. 1 + partial 1,063.31 (107) 696.31 (107) 1,117.16 (214)
loading
invariance

4. 3 + correlated 369.64 (99) 221.67 (99) 589.59 (206)
within errors

5. 4+ correlated 450.63 (198)
between
errors
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Table 6
Item characteristics estimated from the

longitudinal multilevel factor analysis model

Reliabilit DFABF+WF)

Etc all
Error-free increase

Etc P.ILit
Between WithinBetween Within Between Within

RPP .97 .43 .96 .53 .54 .51 25.7 40.0

FRACT .96 .40 .97 .48 .60 .57 25.7 40.0

EQEXP .82 .17 .93 .32 .65 .64 113.0 117.0

INTNUM .82 .19 .87 .23 .63 .61 25.7 40.0

STESTI .85 .26 .89 .34 .58 .56 25.7 40.0

AREAVOL .80 .16 .84 .24 .51 .54 76.0 55.4

MOMS .91 .19 .80 .26 .57 .55 25.7 40.0

PFIGURE .77 .16 .77 .32 .60 .55 88.7 135.0
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Score

TOTAL

ARITH

ALG

MEAS

mom

Table 7

Variance decomposition of aggregated achievement scores
(percentages of total variance in parenthesis)

Pretest Posttest % Increase
Number
of items

School Class Student Prop
between

School Class Student Prop Between
between

Wtihin

39 4.404* 24,377 27.576 .52 12.532 31.039 38.750 .53 51.4 40.5
(7.8) (43.3) (48.9) (15.2) (37.7) (47.1)

16 1.016* 4.919 7.607 .44 2.349 5.589 9.173 .46 33.7 20.6
(7.5) (36.3) (56.2) (13.7) (32,7) (53.6)

8 .172* .964 2.122 .35 .502 1.571 2.543 .45 82.5 19.8
(5.3) (29.3) (65.1) (10.9) (34.0) (55.1)

7 .229* .815 1.882 .36 .430 .949 2.155 .39 32.1 14.5
(7.8) (27.9) (64.3) (12.2) (26.9) (61.0)

8 .131* .842 2.247 .30 .585 1.129 2.701 .39 76.2 20.2
(4.1) (26.1) (69.8) (13.3) (25.6) (61.2)

* Not significant at 5% level
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